
AutoMA: Automated Modular Attention enables Context-Rich Imitation
Learning using Foundation Models

Yifan Zhou1, Xiao Liu1, Quan Vuong2, and Heni Ben Amor1

Abstract— Although imitation learning offers an appealing
framework for policy learning, scaling it is challenging due
to the lack of high-quality expert data. Previous works have
addressed this by modifying model design and increasing state
diversity to improve data quality, but these approaches often
overlook the rich contextual information inherent in the data
itself. In this paper, we propose an automated learning frame-
work that leverages large language models (LLMs) and vision-
language models (VLMs) to provide context-rich supervision
for Modular Attention based imitation learning policies, de-
noted as AutoMA. Specifically, LLMs are used for hierarchical
modular design, and VLMs provide supervision signals for the
different modules. AutoMA thus leverages the capabilities of
foundational models to inform the policy with rich context
from the data. Experimentally, we demonstrate that AutoMA
is scalable across a broad spectrum of tasks and significantly
outperforms baseline models in six simulated and real-world
manipulation tasks, achieving success rate improvements of up
to 63.3%. Furthermore, we illustrate how AutoMA facilitates
re-using the modules when transferring the policy to different
robots with only 20% of the original data scale, significantly
improving data efficiency. The project page is at https:
//auto-ma.github.io/.

I. INTRODUCTION

Imitation learning is vital in robotics and machine learn-
ing, allowing robots to learn skills by mimicking expert
demonstrations [1]–[7]. It is preferred for its ability to
teach complex tasks without extensive programming, making
learning and adaptation more accessible [8]–[10]. However,
obtaining large-scale expert demonstrations for imitation
learning remains a significant challenge [11]. Beyond the
labor-intensive and time-consuming data collection process, a
common issue is the quality of the data, particularly whether
the state and action pairs provide sufficient representation
for the task [12], [13]. Several prior works have addressed
this challenge by modifying the model with task-specific
assumptions. These approaches include incorporating longer
history information [14], conditioning on prior generated
actions [15], injecting expert policy to guide the behavior
of the student policy [16], and modifying perception or
action representations [17]–[19]. However, these approaches
overlook the potential of leveraging the context inherent in
the data itself for policy learning, rather than just altering
the algorithm. For example, as shown in Figure 1, the task
“stack the blue block on the red block” contains a planning
hierarchy within the language instruction, indicating that the
blue block needs to be picked up first and placed on the

1Authors are with the School of Computing and Augmented
Intelligence, Arizona State University {yzhou298, xliu330,
hbenamor}@asu.edu. 2Author is with Physical Intelligence,
{quan.hovuong}@gmail.com

"Stack the blue block
on the red block"

Sub-task labels

VLM

LLM

Context Extraction

AT1 AT1 AT1 AT1

Hierarchical Design

Lang

Blue

Red

Blocks Control

EE

Stack

Learning AutoMA with Leveraged Rich-Context

Human Demonstrations (unlabelled)

Fig. 1. Given the task “stack the blue block on the red block”, LLMs
design hierarchical modules h by decomposing the task into several sub-
task modules, while VLMs supervises the module. The policy network,
enriched with this context, can then effectively execute the task.

red block. Additionally, observation images can help infer
and locate the blocks. This context is often disregarded in
conventional end-to-end imitation learning pipelines.

An effective approach to improve imitation learning poli-
cies should involve leveraging the useful context inherent in
the data while simultaneously designing models with task-
specific assumptions. One method to embed context within
a model is through modularity [20], [21], allowing task-
specific contexts to be learned within different sub-modules
in parallel. While this approach enhances data efficiency and
improves performance, it requires significant manual effort
for labeling data to define the sub-modules correctly, which
can be labor-intensive and time-consuming, especially in
complex tasks.

In this paper, we address the challenges of labor-intensive
data labeling and manual sub-module design by leveraging
large language models (LLMs) and vision-language models
(VLMs) to automatically design the sub-modules, their hier-
archies, and extract their labels. This approach systematically
integrates context extraction from data with task-specific
architectural design, allowing for more efficient policy learn-
ing. This automated pipeline for policy learning is named
Automated Modular Attention (AutoMA). As shown in
Figure 1, AutoMA utilizes the reasoning capabilities of large
language models (LLMs) to decompose tasks into several
sub-tasks, which are treated as modules. Vision-Language

https://auto-ma.github.io/
https://auto-ma.github.io/

Image 1 Image TLang EE Image

Task Object Object

ObjLoc ObjLoc

CTRL

"Stack the red block
on the brown block"

Attn I

Attn II

Attn III

MLP robot action

qu
er

y

key key key

Attn I Attn II Attn III

Slot Attention Maps

Image 2

Proprioception

Fig. 2. LLMs decompose high-level tasks, such as “stack the red block on the brown block” into modules and construct a hierarchy among them. AutoMA
integrates this hierarchy using slot attention mechanisms for policy learning. For instance, the Task and Object only focus on Lang tokens in the first
attention layer, the ObjLoc module attends to Image to localizing objects, and the CTRL module attends to EE, task, and ObjLoc to generate final
robot actions.

Models (VLMs) are then employed to semantically under-
stand and label each sub-module. AutoMA implements these
hierarchical modules designed by LLMs in a transformer
which is modularized, through supervised attention [22]. This
automated framework bridges the gap between modular and
end-to-end learning, enabling the reuse of functional building
blocks. In summary, our contributions are as follows: (1)
Leveraging Rich Context: Our approach leverages rich
context by decomposing tasks into hierarchical modules
and semantically extracting the underlying context for each
module; (2) Improving Data Efficiency: AutoMA enhances
data efficiency by enabling the reuse of functional building
blocks when transferring tasks to different embodiments;
(3) Empirical Evaluations: AutoMA demonstrates signif-
icant improvements, achieving up to 63.3% success rate
improvements in complex manipulation tasks with distractors
compared to baselines.

II. RELATED WORK

Imitation learning, particularly language-conditioned im-
itation learning, has achieved significant success in vari-
ous manipulation tasks by exploiting task-specific features
and designing targeted algorithms or collecting specialized
demonstrations [6], [7], [23]–[26]. For instance, task-specific
features can be embedded through discrete latent plans [12],
using a learned planner to guide robot policy [27], and
modifying action representations [17]. While effective, these
approaches are typically not able to scale up beyond their
designated tasks. Recently, there has been increased focus
on developing foundational robot models that aim to assim-
ilate extensive datasets consisting of a broad spectrum of
tasks and objects [3], [4], [28]–[31]. Although these models
show promising scalability and flexibility, they require a
large number of human demonstrations to learn a restricted
number of tasks. Alternatively, some research has focused on
utilizing the grounding capabilities of foundational models
within the robot manipulation pipeline, which reduces the
complexity of training robot policies while still maintain-
ing robust performance. For example, studies have applied
LLMs to decompose high-level instructions into lower-level

skills [32], generate embodied control signals [33], translate
language instructions into robot behavior-based reward func-
tions [34], finding out the affordance of the different parts
of objects [35], or even outputting low-level control signals
directly [36]. However, these methods mainly facilitate effec-
tive language grounding for robot policies, lacking the neces-
sary visual or physical grounding of the environment. There-
fore, a promising direction for scaling up involves leveraging
both LLMs and Vision Language Models (VLMs). For ex-
ample, the framework in [37] integrates language-embedded
radiance fields to distill visuo-linguistic representations suit-
able for manipulation tasks. Similarly, the approach in [38]
directly utilizes VLM outputs to compose 3D value maps for
model-based planning. Additionally, the framework in [39]
learns a waypoint-based policy conditioned on 3D keypoints
by leveraging Cliport [40]. Another case is utilizing open-
vocabulary object detectors in the inference, whose output is
supplied as input of robot policies [41]. These methodologies
enable the use of LLMs and VLMs to extract task context
during inference. While this approach simplifies the process,
querying large models during inference remains suboptimal.
In our work, we also employ both LLMs and VLMs for
enhanced data understanding and context extraction. Unlike
previous methods, we distill the task and visual context
into a proposed modular-based policy, eliminating the need
to query large models during inference. Consequently, our
approach systematically leverages the rich context within the
data while mitigating computational overhead and reducing
dependency on external systems.

III. AUTOMA: AUTOMATED MODULAR ATTENTION

Our method focuses on training a language-conditioned
robot policy from a dataset D = {d0, ...,dN}, which
comprises N expert demonstrations. Each demonstration d is
a sequence of T steps ((a0, s0, I0), . . . , (aT , sT , IT)). The
goal is to derive a robot policy πθθθ,h(a|s, I) that follows
human instruction s based on an observed image I , parame-
terized by θθθ with a transformer deep network. The hierarchy
h defines the architecture of the modules to be instantiated
in the transformer in order to accomplish the task.

The AutoMA pipeline operates in two key steps: (1)
Automatic Hierarchy and Module Design. In this phase,
we employ LLMs and VLMs for task comprehension, which
autonomously generates a hierarchy of modules relevant
to the task, along with the corresponding training labels.
(2) End-to-End Training of Modular Attention. Once
the training data and module design are established, the
second step involves training a transformer model end-to-
end, embedding the modular hierarchy to guide the learning
process effectively.

For instance, in a stacking task illustrated in Fig-
ure 1, the task is automatically decomposed by LLMs
into several sub-tasks: understanding the required action
type, e.g., (1) identifying which object to manipulate,
(2) locating the object in the image, and (3) generat-
ing the end-effector controls. As shown in Figure 3,
these sub-tasks are automatically formed as a hierar-
chical structure by LLMs, denoted as h with modules,

Lang

Task

Object ObjLoc

Image EE

CTRL

Fig. 3. Hierarchy design of a high-
level task through modules.

where Lang, Image, and
EE are considered as input
modules, Task, Object,
ObjLoc, and CTRL are
sub-task modules. Draw-
ing from [42], we em-
bed this hierarchical struc-
ture h into the transformer
network through modular
attention, as illustrated in Figure 2. This modular design
enables end-to-end training with sub-task labels. In the sub-
sequent sections, we address (1) the automatic identification
of sub-tasks and their hierarchical structure, and (2) the
integration of this hierarchy into the policy network.

A. Step 1: Automatic Synthesis of Hierarchy and Modules
Task Hierarchies. Task hierarchies h encapsulate the

semantic structure of tasks, requiring general commonsense
knowledge for generation. To achieve this, we leverage
vision-enhanced Large Language Models (LLMs) due to
their strong semantic interpretation capabilities. Few-shot in-
context learning is employed, where the prompt template
includes three key components: (a) a verbal task instruction,
(b) frames from an expert demonstration, and (c) an expert-
designed task hierarchy as a reference example. Our exper-
iments show that LLMs effectively and accurately generate
task hierarchies, demonstrating their potential in structuring
complex tasks1.

Sub-Task Labels. The primary challenge in identifying
sub-task labels is ensuring accurate labeling for each module
type while maintaining high label quality. To address this, we
categorize the sub-task labels as follows:

• Semantic Understanding: this set of label are for
Task and Object modules, where the task/action and
the object types are identified at the language level.

• Visual Grounding: This set of labels is utilized for the
ObjLoc module. We leverage open-vocabulary vision

1For more details on how LLMs design task hierarchies, please refer to
https://auto-ma.github.io/

foundation models, such as Owl-ViT [43], for obtaining
objection locations.

• Embodiment data: These data include end-effector po-
sition and orientation, as well as robot joints trajectory
for EE module.

B. Step 2: End-to-End Training of Modular Attention

After the task hierarchy and modules have been automat-
ically synthesized, the next step is to embed this structure
into the policy network. AutoMA achieves this by leveraging
an attention mechanism to effectively guide the flow of
information between the sub-modules during training.

Generally, attention mechanism operates using three com-
ponents: queries (Q), keys (K), and values (V). The query (Q)
identifies the most relevant keys (K), producing scores that
reflect their alignment. These scores are normalized and used
to weight the corresponding values (V), thereby aggregating
the most relevant information.

q
u

e
ry

o
u

tp
u

t

key

: Task

: Object

: Lang

: EE

: Image

: ObjLoc

: max attn.

Fig. 4. The ObjLoc
module in detail.

In the proposed approach, we
demonstrate that sub-modules
within the hierarchy h integrate
seamlessly into the attention
mechanism framework. As depicted
in Figure 4, the ObjLoc module
queries both the Image and
Object modules. The attention
layers identify the most relevant
keys—specifically, the image patch
containing the object—and retrieve
the corresponding values as output.
Similarly, in the Object module, the relevant keys and
values are language inputs, where the query targets language
tokens, which are then fetched and used as output. This
approach allows us to use the attention mechanism flexibly,
fitting different tasks within the same framework. The full
hierarchy h in a single transformer architecture is shown
in Figure 2. The training process of AutoMA contains two
main parts: aligning attention flow with the hierarchy and
optimizing each module’s output for its specific sub-task.

Training: As illustrated in Figure 2 (right), tokens between
layers represent sub-modules, while the attention map shows
data flow between these sub-modules. The training process
of the transformer network involves two main parts: aligning
attention flow with the hierarchy and optimizing each mod-
ule’s output for its specific sub-task. We propose the task
hierarchy loss as:

Lh =

N∑
n=0

(softmax

(
qnk

T
n√
d

)
− 1)2. (1)

The task hierarchy loss Lh optimizes towards fetching the
key kn for the given module’s query qn. Therefore, it
can guide the attention of the sub-modules to enforce the
controlled data flow. We calculate the loss for every sub-
module 1 ≤ n ≤ N , Lh. The sub-task loss Lsub is:

Lsub =

N∑
n=0

⟨MLPn(on), ln⟩, (2)

https://auto-ma.github.io/

TableTopSort with Dis.SortStack with Dis.StackLift

"Rotate the Fanta""Put coke to the bin""Put coke to the bin""Stack the blue cube
on the red cube"

"Stack the red cube
on the green cube"

"Lift the red cube"(a) (b) (c) (d) (e) (f)

Fig. 5. Tasks (a)-(f) show examples of diverse tasks in our study, with each consisting of observation and language pairs. Tasks (a)-(e) are in simulation,
while task (f) represents a real-world task.

TABLE I
TASK PROPERTIES

Task Dis. HiPrec Dem. Act. Steps

Lift. 0 × 300 1 ∼64
Stack 0 ✓ 300 1 ∼88
Stack Dist. 3 ✓ 1800 1 ∼97
Sort 0 ✓ 300 1 ∼221
Sort Dist. 3 ✓ 1800 1 ∼193
TableTop 4 × 1500 3 ∼122

it the loss of every sub-modules’ final output supervision. For
the sub-task loss Lsub, we create MLPs for each sub-module,
which serve as prediction heads. The attention output token
on of the n-th module is passed through MLPn, which is
supervised through the sub-task label ln. The overall training
objective is Lh + Lsub. The result of this training process
is a robot policy that generates actions, which is instantiated
by a transformer network and is embedded by modules that
correspond for the sub-tasks.

IV. EVALUATION

We conduct a series of experiments to evaluate the ef-
ficacy of the AutoMA framework. Specifically, we aim
to answer the following questions: (a) How the AutoMA
performs with and without supplied rich context extracted
by LLM and VLM? (b) To what extent does the AutoMA
outperform the current state-of-the-art methods in terms of
overall performance? (c) How can AutoMA improve data
efficiency by leveraging modularity? Therefore, we evaluate
the effectiveness of AutoMA across multiple manipulation
tasks, each with distinct setups: (1) task (a)-(c) for block
stacking tasks, (2) task (d)-(e) for object sorting tasks with
and without distractors, and (3) task (f) for manipulation
in real-world with distractors. We propose two categories
of baseline policies to compare: (a) Image-BC: this base-
line adopts an image-to-action agent framework, similar
to BC-Z [6], it is built upon ResNet-18 backbone and
employs FiLM [44] for conditioning using CLIP language
features. (b) Diffusion Policy [45]: This baseline is a
standard diffusion-based policy. We adopt the 1D temporal
convolutional networks from [46] and construct the U-net
backbone. (c) ModAttn [21]: This baseline is a transformer
based network, which shares the same architecture with our
proposed AutoMA, but trained end-to-end without enforcing
rich contexts.

Task Setup: The action of the robot arm is represented as
at, where each action is denoted as at = [x, y, z, r, p, y, g]T ,
where t ∈ [1, T]. It encompasses the position of the end-
effector in Cartesian coordinates (x, y, z), the orientations

S
ta

ck
 b

lo
ck

s
S

ta
ck

 b
lo

ck
s

S
or

t
ob

je
ct

s
T

ab
le

T
op

action

Fig. 6. The first two rows illustrate the stacking task. The third row
showcases a successful sorting experiment, while the last row depicts a
real-world tabletop manipulation task. The results are best appreciated with
videos on the website: https://auto-ma.github.io/.

(r, p, y), and the gripper’s joint angle g. For all the tasks, the
input modalities consist of two modalities: I and l. The first
modality, I ∈ R224×224×3, corresponds to a RGB image.
The second modality, l, refers to a language embedding
derived from natural language sequences. This embedding
serves as the linguistic input for the robot’s understanding
and decision-making processes. Table I further arranges the
tasks in ascending order of subjective difficulty, providing
a summary of task characteristics such as the number of
distractors (Dis), number of expert demonstrations (Dem),
number of varied actions (Act), and whether high-precision
(HiPrec) is required or not. The simulated tasks are con-
ducted within Robosuite [47] and we used an UR5 robot for
real-world tasks.

A. Results

Stacking tasks: The stacking task evaluation results are
shown in Table II. Success rates for each sub-task are based
on 100 trials, where success is defined as the robot success-
fully stacking the block without dropping it. The primary
challenge lies in assessing whether the policy can accurately
connect the language to the target, particularly when multiple
objects are present. In the lifting and stacking tasks (task
(a)-(b)), all policy networks achieve above an 80% success
rate. However, when confronted with more blocks on the
table, Image-BC, Diffusion Policy, and ModAttn struggle to
pick up the block and place it on the correct target based on

https://auto-ma.github.io/

AutoMA

Sorting w Dist. Stacking w Dist. Sorting wo Dist. Stacking wo Dist.

ModAttn Image-BC Diffusion Policy

20% 40% 60% 20% 40% 60%
0

20

40

60

80

100
S

uc
c

R
at

e%

20% 40% 60% 20% 40% 60%
0

20

40

60

80

100

Transfer policy to different embodiment

Fig. 7. Modularity can be reused when transferring the AutoMA policy from UR5 to Franka robot using different percentages of the original data,
outperforming other state-of-the-art policies.

TABLE II
RESULTS EVALUATION IN FORMS OF SUCCESS RATE (%) DURING

POLICY EXECUTION

Method Stack Sort TableTopLift wo Dist. w Dist. wo Dist. w Dist.

Image-BC 93% 81% 25% 18% 56% 6.7%
Diffusion Policy 100% 81% 2% 97% 4% 6.7%

ModAttn 96% 92% 7% 88% 15% 16.7%
AutoMA 100% 97% 81% 100% 88% 80%

the language condition. From a data perspective, considering
the blocks can be located at various positions with different
colors, AutoMA outperforms the baselines with 81% success
rate due to its ability to access informative context regarding
the block locations, colors, and proprioception of the robot.

Sorting tasks: In this task, the robot picks an object based
on language input and places it in the corresponding bin. The
visualization of the actions are shown in Figure 6. Success
rates (over 100 test trials) for sorting with and without
distractors are reported in Table II. Notably, most policy
networks struggle with visual and language distractors. For
example, Diffusion Policy sorts a single object correctly 97%
of the time but fails with varied objects (4% success rate).
In contrast, AutoMA achieves a 100% success rate with
one object and 88% with varied objects. This aligns with
the stacking task observations, demonstrating that AutoMA
scales effectively with increased task complexity due to
its hierarchical design, providing stable and contextually
informed actions.

Tabletop tasks: In this real-world tabletop manipulation
task, the robot performs “pick”, “push”, and “rotate” actions
on specified objects based on language input, such as picking
up the Fanta bottle in Figure 6. According to Table II,
AutoMA with rich-context achieves an 80% success rate
over 30 trials. In contrast, Image-BC, Diffusion Policy, and
ModAttn without rich-context achieve only 6.7%, 6.7%,
and 16.7%, respectively. The most common failure is the
robot cannot grasp the target object correctly due to the
wrong estimation of the target position, even if it performs
the correct actions. AutoMA excels at locating the target
position because its object-locating module enforces high
attention values on the target object. So the subsequent action
generating layer is well-informed of the target position. In
summary, we can conclude the proposed AutoMA framework
effectively uses LLMs and VLMs to provide rich context and
hierarchical design, ensuring contextually informed action

generation.
Modularity Reuse: In previous sections, we demonstrate

how AutoMA leverages rich context from LLMs and VLMs.
Now, we address the question: “How can AutoMA improve
data efficiency through modularity?”. To answer this, we
evaluate whether the trained modules can be transferred to
another embodiment by fine-tuning with a limited amount
of data as shown in Figure 7 (right). We report the success
rates when transferring policies from a UR5 to a Franka
robot using 20%, 40%, and 60% of the original dataset. For
sorting tasks, AutoMA achieves an 81% success rate with
just 20% of the new data, whereas Image-BC and Diffusion
Policy achieve only 38% and 7%, respectively. Similarly, for
stacking tasks, AutoMA attains a 58% success rate, while
Image-BC and Diffusion Policy significantly underperform
with success rates of 9% and 1%, respectively. The reuse
of trained modules allows AutoMA to transfer effectively
to variations of appearances and kinematics of different
embodiments with improved data efficiency.

B. Ablation Study

Modularity Inspection: Although AutoMA is trained
in an end-to-end manner, its modular design ensures full
explainability of the model. A modularity inspection was
conducted to assess the functionality of each sub-module
within the AutoMA framework. In Table III, we report the
outputs for object grounding sub-modules. Specifically, the
“lang” metric indicates the accuracy of the language module
in understanding the target object of the task, while the
“vision” metric evaluates the success of the vision sub-
modules in locating the object within the image space. The
end-effector module estimates the gripper’s position and
orientation. We calculated the mean absolute error (MAE)
between the estimated position and the ground truth. Accord-
ing to Table III, AutoMA is always able to understand what
is the target object from language. For visual grounding of
objects, AutoMA is able to detect object pixel locations with
an error of ∼2 pixels. when handling tasks with distractors.
The end-effector module demonstrates stable and accurate
performance, with euclidean distance of only ∼0.2 cm.

Quality of Hierarchy: To further evaluate the effec-
tiveness of the generated task hierarchy, we conducted an
ablation study by comparing the resulting performance of
three hierarchies, h1, h2, and h3, on AutoMA (shown in
Figure 9). Here, h1 represents a “good” hierarchy with

TABLE III
EVALUATION FOR OBJECT GROUNDING AND END-EFFECTOR LOCATION.

Task 1st Object Grounding 2nd Object Grounding End-Effector
Lang Vision (px) Lang Vision (px) (cm)

Lift 100% 0.46 ± 0.34 - - 0.23 ± 0.13
Stack wo Dist. 100% 0.45 ± 0.35 100% 1.37 ± 1.42 0.21 ± 0.12
Stack w Dist. 100% 1.49 ± 3.57 100% 1.99 ± 2.44 0.18 ± 0.09
Sort wo Dist. 100% 0.51 ± 0.35 - - 0.17 ± 0.09
Sort w Dist. 100% 1.92 ± 1.14 - - 0.29 ± 0.13

h1 h2 h3
0

20

40

60

80

100

S
uc

c
R

at
e%

25% 50% 75% 100%
0

20

40

60

80

100

S
uc

c
R

at
e%

 Performance of AutoMA under different conditions

Different Hierarchy Percentage of correct labels

Fig. 8. AutoMA performance on “stack with distractors” task with different
quality of hierarchy and VLM labels.

correct information flow, while h2 does ignores the state of
the robot end-effector, and h3 lacks the module of finding
object locations from the images. The results, presented in
Figure 8 (left), demonstrate that implementing a hierarchy
with incorrect modules as in h2, leads to a 16% decrease
in the success rate for the stacking with distractor task.
Moreover, if there lack of a module for finding object
locations, the performance drops drastically. Qualitatively,
the trained policy is not able to associate language with
different target objects, resulting in converging to the mean
of all demonstrations.

Quality of VLM labels: In many real-world tasks, there is
no guarantee that VLMs will consistently produce accurate
sub-task labels. To address this, we conducted an ablation
study simulating scenarios with varying degrees of missing
or invalid sub-task labels to evaluate the performance of Au-
toMA under these conditions. As shown in Figure 8 (right),
a higher number of correct labels correlated with increased
success rates. Notably, when at least 75% of the labels were
accurate, AutoMA maintained robust performance, indicating
that VLMs do not need to produce 100% correct labels for
effective task execution.

Growth of Hierarchy: The reuse of hierarchical structures
facilitates not only the transfer of policies across differ-
ent embodiments but also the progressive growth of these
hierarchies. Previously trained modules can be effectively
integrated and utilized in subsequent stages alongside newly
added modules. As illustrated in Figure 9, we initially trained
AutoMA on the lifting task, represented by hlift, achieving a
100% success rate. We then expanded this hierarchy to hstack

by incorporating new vertices for recognizing the green cube
and fine-tuning them accordingly, resulting in a 95% success
rate. The enhanced model was subsequently applied to the
stacking task with distractors, denoted as hstack dist, where
the red and green cube localizers were replaced by general
cube localizers for any indicated colors. Our results show that
the performance on the stacking task with distractors reached

Lang

Task

Red RLoc

Image EE

CTRL Lang

Task

Red RLoc

Image EE

CTRL

Green GLoc

Lang

Task

Image EE

CTRL

Object2 ObjLoc2

Object1 ObjLoc1

Lang

Task

Image EE

CTRL

Object2 ObjLoc2

Object1 ObjLoc1

Lang

Task

Image

CTRL

Object2 ObjLoc2

Object1 ObjLoc1

Lang

Task

EE

CTRL

Object2

Object1

Fig. 9. The upper row shows the representations of hierarchies for the
ablation study of hierarchy quality. The lower row shows the hierarchies
used for hlift, hstack, and hstack dist. The red denotes newly added
modules.

an 85% success rate, surpassing the success rate achieved by
training solely on task-specific data from scratch.

V. CONCLUSIONS

In this paper, we explore the following question: Can addi-
tional insights be extracted from expert demonstrations to en-
hance policy learning in an automatic manner? Our proposed
method, AutoMA, affirmatively addresses this question. We
demonstrate that leveraging Large Language Models (LLMs)
and Vision Language Models (VLMs) allows AutoMA to
utilize context-rich supervision signals for imitation learning.
Through experimentation, we showcase that our proposed
approach yields superior performance across a diverse array
of complex manipulation tasks, outperforming state-of-the-
art methods by up to 63.3%. Further experiments validate the
reusability of learned modules when transferring tasks to new
domains. For future work, we plan to explore AutoMA’s ca-
pacity to scale hierarchical module designs for decomposing
longer-horizon tasks. Additionally, we anticipate that with
advancements in LLMs and VLMs, AutoMA will enable the
completion of more sophisticated tasks.

Limitations: While the proposed AutoMA framework
effectively incorporates task context, extracting relevant con-
text from highly sophisticated tasks, such as robotic soccer
or chess, presents considerable challenges. The primary issue
lies in embedding complex context through task decompo-
sition. The LLMs leveraged for context extraction and sub-
task supervision may falter in generating appropriate task
hierarchies for such complex activities, while VLMs might
occasionally fail to detect key grasping points of challenging
objects, e.g., deformable objects like strings or clothes,
thereby impairing the trained policy’s efficacy. It’s worth
noting that while our method is modularized, it currently
lacks a memory module to support stateful behaviors. While
it’s worth noting that many state-of-the-art policy networks
also lack support for statefulness [6], [17], [45], [48], this
limitation can restrict our method from effectively learning
highly stateful behaviors, such as periodic actions or tasks
in dynamically changing environments.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, “A survey of
imitation learning: Algorithms, recent developments, and challenges,”
IEEE Transactions on Cybernetics, 2024.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[4] A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta, A. Padalkar,
A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain, et al., “Open
x-embodiment: Robotic learning datasets and rt-x models,” in 2024
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 6892–6903.

[5] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proceedings of Robotics: Science and Systems (RSS), 2023.

[6] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning. PMLR,
2022, pp. 991–1002.

[7] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot ma-
nipulation tasks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 13 139–13 150, 2020.

[8] H. B. Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in 2014
IEEE international conference on robotics and automation (ICRA).
IEEE, 2014, pp. 2831–2837.

[9] S. Ruan, W. Liu, X. Wang, X. Meng, and G. S. Chirikjian, “Primp:
Probabilistically-informed motion primitives for efficient affordance
learning from demonstration,” IEEE Transactions on Robotics, 2024.

[10] J. Aldaco, T. Armstrong, R. Baruch, J. Bingham, S. Chan, K. Draper,
D. Dwibedi, C. Finn, P. Florence, S. Goodrich, et al., “Aloha 2:
An enhanced low-cost hardware for bimanual teleoperation,” arXiv
preprint arXiv:2405.02292, 2024.

[11] S. Belkhale, Y. Cui, and D. Sadigh, “Data quality in imitation learn-
ing,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[12] O. Mees, L. Hermann, and W. Burgard, “What matters in language
conditioned robotic imitation learning over unstructured data,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 205–11 212,
2022.

[13] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” in Conference
on Robot Learning. PMLR, 2023, pp. 892–909.

[14] P.-L. Guhur, S. Chen, R. G. Pinel, M. Tapaswi, I. Laptev, and
C. Schmid, “Instruction-driven history-aware policies for robotic ma-
nipulations,” in Conference on Robot Learning. PMLR, 2023, pp.
175–187.

[15] X. Liu, F. C. Weigend, Y. Zhou, and H. B. Amor, “Enabling stateful
behaviors for diffusion-based policy learning,” in ICRA 2024 Workshop
Back to the Future: Robot Learning Going Probabilistic.

[16] A. Galashov, J. S. Merel, and N. Heess, “Data augmentation for
efficient learning from parametric experts,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 31 484–31 496, 2022.

[17] S. Belkhale, Y. Cui, and D. Sadigh, “Hydra: Hybrid robot actions for
imitation learning,” in Conference on Robot Learning. PMLR, 2023,
pp. 2113–2133.

[18] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1612–1619, 2022.

[19] X. Liu, Y. Yoshimitsu, and H. B. Amor, “Learning soft robot dynamics
using differentiable kalman filters and spatio-temporal embeddings,”
in 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2023, pp. 2550–2557.

[20] R. Csordás, S. van Steenkiste, and J. Schmidhuber, “Are neural
nets modular? inspecting functional modularity through differentiable
weight masks,” in International Conference on Learning Representa-
tions, 2020.

[21] Y. Zhou, S. Sonawani, M. Phielipp, S. Stepputtis, and H. Amor, “Mod-
ularity through attention: Efficient training and transfer of language-

conditioned policies for robot manipulation,” in Conference on Robot
Learning. PMLR, 2023, pp. 1684–1695.

[22] Y. Zhou, S. Sonawani, M. Phielipp, H. Ben Amor, and S. Stepput-
tis, “Learning modular language-conditioned robot policies through
attention,” Autonomous Robots, vol. 47, no. 8, pp. 1013–1033, 2023.

[23] A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach,
and D. Kiela, “Flava: A foundational language and vision alignment
model,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 15 638–15 650.

[24] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-
task transformer for robotic manipulation,” in Conference on Robot
Learning. PMLR, 2023, pp. 785–799.

[25] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn, “Waypoint-based
imitation learning for robotic manipulation,” in Conference on Robot
Learning. PMLR, 2023, pp. 2195–2209.

[26] Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu, “Learning generalizable
manipulation policies with object-centric 3d representations,” in 7th
Annual Conference on Robot Learning, 2023.

[27] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu,
and A. Anandkumar, “Mimicplay: Long-horizon imitation learning by
watching human play,” in 7th Annual Conference on Robot Learning,
2023.

[28] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[29] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-
Estruch, A. W. He, V. Myers, M. J. Kim, M. Du, et al., “Bridgedata
v2: A dataset for robot learning at scale,” in Conference on Robot
Learning. PMLR, 2023, pp. 1723–1736.

[30] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y.
Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine,
“Octo: An open-source generalist robot policy,” in Proceedings of
Robotics: Science and Systems, Delft, Netherlands, 2024.

[31] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson,
Y. Chebotar, D. Dwibedi, and D. Sadigh, “Rt-h: Action hierarchies
using language,” arXiv preprint arXiv:2403.01823, 2024.

[32] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on robot
learning. PMLR, 2023, pp. 287–318.

[33] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for em-
bodied control,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 9493–9500.

[34] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, et al., “Language
to rewards for robotic skill synthesis,” in 7th Annual Conference on
Robot Learning, 2023.

[35] S. Li, S. Bhagat, J. Campbell, Y. Xie, W. Kim, K. Sycara, and
S. Stepputtis, “Shapegrasp: Zero-shot task-oriented grasping with large
language models through geometric decomposition,” arXiv preprint
arXiv:2403.18062, 2024.

[36] S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas,
K. Rao, D. Sadigh, and A. Zeng, “Large language models as general
pattern machines,” in Conference on Robot Learning. PMLR, 2023,
pp. 2498–2518.

[37] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa,
and K. Goldberg, “Language embedded radiance fields for zero-shot
task-oriented grasping,” in Conference on Robot Learning. PMLR,
2023, pp. 178–200.

[38] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” in Conference on Robot Learning. PMLR, 2023, pp. 540–
562.

[39] P. Sundaresan, S. Belkhale, D. Sadigh, and J. Bohg, “Kite: Keypoint-
conditioned policies for semantic manipulation,” in Conference on
Robot Learning. PMLR, 2023, pp. 1006–1021.

[40] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on robot learning.
PMLR, 2022, pp. 894–906.

[41] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong,
P. Wohlhart, S. Kirmani, B. Zitkovich, F. Xia, et al., “Open-world

object manipulation using pre-trained vision-language models,” in
Conference on Robot Learning. PMLR, 2023, pp. 3397–3417.

[42] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran,
G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-
centric learning with slot attention,” Advances in neural information
processing systems, vol. 33, pp. 11 525–11 538, 2020.

[43] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn,
A. Dosovitskiy, A. Mahendran, A. Arnab, M. Dehghani, Z. Shen, et al.,
“Simple open-vocabulary object detection,” in European Conference
on Computer Vision. Springer, 2022, pp. 728–755.

[44] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, 2018.

[45] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,” in
Proceedings of Robotics: Science and Systems (RSS), 2023.

[46] M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with
diffusion for flexible behavior synthesis,” in International Conference
on Machine Learning, 2022.

[47] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” arXiv preprint arXiv:2009.12293,
2020.

[48] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-Grained
Bimanual Manipulation with Low-Cost Hardware,” in Proceedings of
Robotics: Science and Systems, July 2023.

	INTRODUCTION
	Related Work
	AutoMA: Automated Modular Attention
	Step 1: Automatic Synthesis of Hierarchy and Modules
	Step 2: End-to-End Training of Modular Attention

	Evaluation
	Results
	Ablation Study

	CONCLUSIONS
	References

